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Free surfaces of binary mixtures (AB) have a profound effect on phase separation kinetics, since
typically one species (say, A) will be preferentially attracted to the surface. Both experiments and
numerical simulations have given ample evidence that in the initial stages a (damped) concentration
wave forms, in the direction normal to the surface; the amplitude of these concentration oscillations
is rapidly damped as one moves into the bulk. We discuss these phenomena in the framework of a
linearized theory of spinodal decomposition, where the usual Cahn-type treatment is supplemented
by the appropriate boundary conditions. It is shown that the predicted wavelength of the concen-
tration oscillations is compatible with the numerical treatment of the full nonlinear equations. We
discuss how these phenomena depend both on the boundary conditions and the bulk state of the
mixture to which the quenching experiment leads (temperature, concentration). Extension to thin
film geometry and application to experiment are briefly discussed.

PACS number(s): 68.10.—m
I. INTRODUCTION AND OVERVIEW

Recently the effect of surfaces on the kinetics of phase
separation in binary systems (AB) has found a lot
of attention, both experimentally [1-11] and theoreti-
cally [12-18]. The theoretical work, however, is almost
entirely of numerical character. While Sagui et al. [18]
present a Monte Carlo study of a kinetic Ising type
model, which hence is a valid description of surface ef-
fects in crystalline mixtures, all other work is based on
numerical solutions of cell-dynamical type [19] equations.
In such a framework, the effect of the surface is described
by boundary conditions on the (nonlinear) Cahn-Hilliard-
type [20] differential equation. Such boundary conditions
have recently been derived either from a continuum ap-
proximation to a master equation treatment of a semi-
infinite spin-exchange Ising model in mean field equa-
tion [21] or—near the critical point of the mixture—from
general symmetry considerations [22], and have a non-
trivial character. While the qualitative effects of sur-
faces on phase separation can presumably already be as-
serted from simplified ad hoc assumptions (as done, e.g.,
in Ref. [12]) about these boundary effects, for a quan-
titatively reliable treatment of such phenomena the cor-
rect boundary conditions should be used [13,16,17]. Only
then can one hope for a quantitative understanding of
the interplay between spinodal decomposition and the
growth of wetting layers [23].

For spinodal decomposition in the bulk, the linearized
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FIG. 1. Schematic description of a quenching experiment
that leads to spinodal decomposition of a mixture: one starts
at a temperature Tp such that the system is in thermal equi-
librium for times ¢ < 0 at the chosen average concentration
¢ of one species (say, A). At time ¢t = 0, the system is sud-
denly cooled to a temperature 7" underneath the coexistence
curve (consisting of two branches cﬁ},{,x, cglx that merge at a
critical point T¢, ccrit). If the state point (¢, T) lies inside of
the spinodal curve ¢, (T'), then the linear theory [20] predicts
that in the bulk of the system long wavelength concentration
fluctuations (exceeding a critical wavelength A.) are unstable,
and grow spontaneously in time (maximum growth rate oc-
curs for A\, = \/fz\c). This is schematically indicated in the
figure, where a growth of a single concentration wave in the
x« direction is shown.
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theory due to Cahn and Hilliard [20] clearly is a use-
ful first orientation [24-27]; see Fig. 1. Although it is
well known that the spinodal curve (where the critical
wavelength A; in Fig. 1 would diverge [20,24-27]) is an
ill-defined concept [24,28-32], except in the mean field
limit of long range forces (or equivalent problems such as
polymer mixtures with very high molecular weight [30]),
the initial length scale A,,(t = 0), where the structure
factor S(q,t) has its peak g, (t) [Am(t) = 27/gm(t)], is
estimated roughly correctly, if one is far away from the
spinodal. Even for short range systems, where nonlin-
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FIG. 2. (a) Snapshot picture of a typical configuration re-
sulting from a discrete implementation of the partial differ-
ential equation model with dynamical boundary conditions
[Egs. (1)-(3) below] on a square lattice, using the surface
parameters [Egs. (6)-(15)] hy = 4, g = —4, and v = 4 at
z = 0 (while at z = 150 free boundary conditions are used),
for a scaled time of 7 = 500, after a start from an initial
condition corresponding to a critical quench (€ = ccrit) from
infinite temperature (To — o), namely uniformly distributed
random fluctuations of amplitude +0.025 about a zero back-
ground. Species A is represented by black dots, species B is
left white. Results are from Puri and Binder [16]. (b) Aver-
aged profiles for the rescaled order parameter ¢av(Z,7) as a
function of Z (scaled distance from the surface) and 7 (scaled
time) for the same model as in (a). The averaging is done
laterally (in the z direction parallel to the surface) and over
an ensemble of five independent initial conditions. Arrows
indicate the predictions of the linear theory for the first two
zeros of ¢av(Z,7) [Eq. (39) below using po(sg) = 1 in this
case]. Numerical results were taken from Ref. [16].
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ear effects are important already in the initial stages of
phase separation [32-34], the error of the linear theory
in predicting A,,(0) is only about 30% [32]. Since many
of the experimental systems of interest are polymer mix-
tures [1-11], where the linear theory is known to be an
even better approximation for the very early stages of
spinodal decomposition in the bulk [30,31,35,36], we feel
there is sufficient interest to consider surface effects in
this framework.

Figure 2 illustrates the type of behavior that we wish
to explain here: while in the bulk (i.e., for large scaled
distances Z from the wall, Z 2 10') the snapshot pic-
ture of the configuration shows the typical “seaweed”
structure observed for bulk phase separation at criti-
cal quenches (€ = ccrit, both phases with compositions
e and ¢y in Fig. 1 then have the same volume
fraction), at the surface we have an enrichment layer
of the A-rich phase, followed by a depletion layer (i.e.,
a layer of the B-rich phase), while then another A-rich
layer follows, which already provides a smooth transition
towards the rather different pattern of the bulk. This
structure shows up in the variation of the average order
parameter @,y (2,7) shown in Fig. 2 (this order parame-
ter here is defined as a rescaled concentration difference,
bav(2,7) = [c(2,T) — Corit] /[clorx — Carig]: the scaling of
time and distance is defined in Sec. II). We see a damped
“concentration wave” propagating from the surface to-
wards the bulk, and the picture from the numerical model
calculation [13,16] is strikingly similar to corresponding
experiments [1]. While the third peak is gradually mov-
ing inwards as time proceeds, reflecting the gradual coars-
ening of the phase separated structures [16,24-27], it is
remarkable that the positions and shapes of the first max-
imum (at the wall) and the adjacent minimum are to
a very good approximation independent of time. This
observation suggests that one should be able to predict
these characteristics already from a linearized theory, and
the arrows included in Fig. 2(b) show that such an ap-
proach indeed is successful.

Having thus motivated our approach, we define our
model in Sec. II, while the heart of our calculations is pre-
sented in Sec. III, where we obtain the explicit solution of
the linear theory of spinodal decomposition with the dy-
namical boundary condition of Ref. [21]. While Ref. [21]
already considered the dynamics of surface enrichment of
mixtures in the one phase region at temperatures T > T¢,
we study here the unstable behavior underneath the spin-
odal curve. Section IV then summarizes our conclusions
and discusses possible applications to experiment.

II. THE MODEL

The microscopic foundation of our description in terms
of a lattice model of binary alloys and the corresponding
modeling of hopping diffusion in terms of a master equa-
tion, which is then used to derive the kinetic equation
as well as the boundary condition, has been discussed at
length in the literature [16,21]. This discussion will not
be repeated here, and we start from Egs. (46), (47), and
(48) proposed by Puri and one of the present authors [16]
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for the rescaled concentration deviation ¢, (Z,7),

0 82
5;6¢k|| (2,7) = (kﬁ - 6_2—2)

1 1 8%
X(1—3¢(2,— "+2822>
x8¢w, (Z,7) , (1)

supplemented by two boundary conditions at Z = 0,

2] o
'é';‘sﬁbk“ (0$ T) = hl + 95¢k|| (0’ T) + '75‘26¢k|| (Z» T)
Z=0

~(3)" gzson iz

Z=0

SO S @

Z=0

and

52— [JQSk" (Z’ T) - 3¢(2)5¢k“ (Za T)]

Z=0

2 (- ) o)

Note that Eq. (1) just results from the standard Ginz-
burg-Landau-type description of the coarse-grained free
energy near T.: then the order parameter ¢ simply is
Yo = /3(T./T — 1), and ¢(R Z,T) 1s the normalized
local order parameter (3, z,t), where 7 is a coordinate
parallel to the surface, z is a coordinate perpendicular to

=0. (3)
Z=0

it, and R, and Z are the corresponding rescaled distances

Z=2z/(26), R= B/(26) ,
(4)

d’(ﬁ) Z’T) = ‘¢'(—/3), zvt)/'d)ﬂ?

and 7 is a rescaled time,

T = (T./T — 1)t/ (87.€2) , (5)

where 7, is the microscopic time constant of the un-
derlying atomistic model (e.g., Kawasaki [37] spin ex-
change model), and &, is the bulk correlation length.
For a hypercubic lattice model with lattice spacing unity
and coordination number g considered in [21], we would
have & = [2¢(1 — T/T.)]"'/2, but we do assert that
Eqgs. (1)-(3) should have a more general validity. The
average rescaled order parameter ¢ is related to the
rescaled concentration difference, of course, ¢ = (& —

Cerit) / (clobx —
con_]ugate to R, Jd)k“ (Z,T) being a Fourier component of
5¢(R Z,1) = dJ(R Z,T) — ¢o. Equation (1) thus has re-
sulted from linearizing the nonlinear Cahn-Hilliard equa-
tion [20] in d¢. Being interested in quantities laterally

averaged parallel to the surface [Fig. 2(b)] we have to
take k) = 0, of course; however, there also may be phys-

Cerit), and k| is a momentum coordinate
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ical mterest in scattering experiments (where the wave

vector k“ of the scattering must be oriented parallel to
the surface, since only then does the system exhibit trans-
lational invariance) and thus we consider k; > 0 here.

Thus the quantities ¢y, (Z,7) are normalized such
that all quantities (¢, k), Z, T) are dimensionless, and ma-
terial constants relating to bulk properties are absorbed
in the normalization. The only parameter that remains
is the normalized average order parameter ¢q; for ¢o = 0
the quench is called a “critical quench” while otherwise
it is “off critical” [24].

Of course, no more freedom is left to eliminate the pa-
rameters that describe the physical effects of the surface,
and thus parameters h,, g, and « remain [Eq. (2)]. Only
Eq. (3) does not contain these parameters, since it is sim-
ply interpreted as an effect of the conservation law for the
concentration: there cannot be any concentration cur-
rent across the surface at z = 0. In brief, the parameters
hi and g are related (in rescaled form) to the difference
in local “effective” chemical potential between species A
and B at the surface, and to the (possibly changed) pair-
wise interactions near the surface [21], if one assumes
that the effect of the surface is strictly local. From the
theory of wetting phenomena [38] it is well known that
long range van der Waals forces (decaying proportional
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FIG. 3. Phase diagram for the phenomenological model for
wetting and drying, Eq. (6). The states are labeled as wet
(W), incompletely wet (IW), incompletely dry (ID), and dry
(D). Note that the phase diagram is symmetric around the
abscissa hi /v = 0 if one interchanges the role of wet and dry
states, respectively, due to the symmetry of Eq. (16) against
a sign change of ¢ for h;y = 0. For g/v < —2 the system
has a second-order wetting transition along the line h1. = —g
(broken straight line) for g/v < —2, which ends at a wet-
ting tricritical point (g¢/y = —2,h1:/v = 2). Dash-dotted
curves denote first-order wetting transitions, dotted curves
denote “surface spinodals” [stability limits of metastable wet
(dry) or incompletely wet (dry) phases, respectively]. The
two crosses (+, X) denote the conditions where the nonlinear
equations corresponding to Egs. (1)—(3) were solved numeri-
cally in Ref. [16] and serve for comparison here.
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to z~3 with the distance from the surface) have profound
effects on the surface phase diagram. Since the numer-
ical work [16] has indicated surprisingly little difference
in behavior for wet and nonwet regions of the surface,
this problem is disregarded here. The parameter ~y fi-
nally is related to the bulk correlation volume, v = 4¢3,
if lengths are measured in units of the underlying lat-
tice spacing. The surface phase diagram depends only
on the ratios hy/y and g/v (Fig. 3) but exhibits both
second-order and first-order wetting transitions. It can
be directly derived from a free energy functional for the
semi-infinite system [38-40]

AF (B [Tzt [ 2_ 42,14
kBTc—/dR{/o de [2(V¢) ¢ +2¢]

h, 1g .
—7¢1 - 5;4’1} ) (6)

which controls the static equilibrium that results from
Egs. (1)—(3) if there a time-independent solution is
sought. Note that in principle Eq. (1) requires four
boundary conditions—e.g., if we consider a thin film of
thickness D two conditions similar to Egs. (2) and (3)
are also imposed for Z = D [17]—but for a semi-infinite
system we rather require that bulk behavior is attained
for Z — oo.

Very close to the bulk critical point one might con-
clude from Eq. (2) that higher order derivatives in 8/0Z
are negligible since then v > 1. However, already the
treatment of the dynamics of surface enrichment [21]
has shown that the situation is more subtle and that all
terms in Eq. (2) need to be retained in order to derive
a physically meaningful solution with the correct limit-
ing behaviors. It is basically through our use of a first-
principles boundary condition [21,22] that our treatment
differs from related work [14,15].

III. SOLUTION OF THE LINEAR THEORY

For solving Egs. (1)—(3) it is convenient to use the ab-
breviations

a=2-6¢5, 8¢ (Z,7)=u(Zt), )
where t' = 7/2 and
aEkﬁ(a—kﬁ), ,852kﬁ—a. (8)
Then Eq. (1) becomes

7] 8%u  B*u

oo =t Paz bz ®)
while the boundary conditions, Egs. (2) and (3), can be
combined to give

ou(0,t’) hy g
“ov 3 2%
u(Z,t') ,8%u(Z,t)
5% %z | (0
Z=0 Z=0
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where abbreviations

N HO R

were introduced. The other boundary condition, Eq. (3),

reads
o= (| (&
2 0z 08z3
Z=0

Using then the Laplace transform

=0. (12)

Z=0

w(Z,s) = L‘oo exp(—st') u(Z,t') dt' (13)

we obtain in terms of the initial condition u(Z,0) =
Ug (Z Z 0) that

8*a 8%
822 08z4°
The boundary conditions, Egs. (10) and (12), become

(s—a)z—uo=p (14)

su(0,8) — up = hy + g'&(0, s)

2s 2
0u(Z, s) ,0%4(Z, s)
Y%z | "z |
Z=0 Z=0
(15)
a—pB0u(Z,s) 8%u(Z, s) _
5 0z "oz =0. (19
Z=0 Z=0
Setting
_ _ Uo
u(Z,s) = —a +V(Z,s), (17)
Eq. (14) becomes
8’v  8*v
(s—a)V=P0g-3 375" (18)

while the boundary Eq. (15) is slightly modified to

(¢—g/2)uo  h1 _ _ VvV (Z,s)
Z=0
82V (Z, s)
%z (19)
Z=0

We now proceed by trying a solution in terms of an os-
cillatory damped wave,
V(Z,s) = e “(DZ{A(s) cos[u(s) Z] + B(s)sin[u(s)Z]} .
(20)
Equations (12), (19), and (20) then imply

(a = B)p/2 +3v%p — p®
(e — B)v/2 — 3vp2 + v3’

Q7 1(s) = A(s)/B(s) = (21)
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(= g/2)u0 _ Py _

P, 5 (9/2 — 8)A+ kuB — kA

—K'[(V® —p®)A—2vpuB]  (22)

and eliminating B(s) from Eq. (22) with the help of
Eq. (21) one further obtains

[(a—g/2)/(s — &) uo — ha/2s
9/2 — s+ rkuQ — kv — &' [(12 — p2) — 20pQ)]

(23)

A(s) =

At this point we note that Eq. (20) can, of course, also be
written in terms of a simple cosine function if we allow
for an amplitude C(s) and a phase ¢(s),

V(Z,5) = C(s) expl=v(s) 7] cos[u(s)Z — o(s)], (24)
where the phase ¢(s) is p(s) = arctan[€2(s)] and clearly
is fixed by bulk properties only, independent of the
constants hi,g,v characterizing the surface. The lat-
ter quantities do enter the amplitude prefactor A(s) [or
C(s) = 4/ AZ2(s) + B?(s), respectively], as expected.

In Eq. (20), the quantity v(s) can be interpreted as
an inverse frequency-dependent correlation length, while
p(s)/2m is an inverse wavelength. These quantities follow
when we require that Eq. (20) solves the bulk equation,
Eq. (18); we simply have to equate the coefficients of
cos(nZ) and sin(pZ) on both sides to find
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(s—a) =8 *—2vpu—p?)

+04 + 48+ 602 — dvu® — pt (25)
(s —a) =B (*+2vp—p?)
+vt —alu 602 4 avpd — pt . (26)

Subtracting these equations from each other yields

B/2+ u?,

and substituting this result in Eq. (25) yields a bi-
quadratic equation for u,

0=—4Bvu+8°3u —8vu, v=+ (27)

3
6p4+4p2ﬂ+zﬂ2—s+a=0, (28)

and hence the solutions for the inverse wavelengths
u(s)/2m are

b=k~ + VB + 12— 0), (29

K34 = ﬂ:% \/—4,6 —V2y/-B2+12(s—a). (30)

In order to discuss which of these many solutions has to
be taken, it is useful to rewrite these functions v2(s) and
12(s) in terms of the physical parameters k) and ¢o:

[K3(s)] = % [4 (1 - 3¢§) £ V2y/—1 — 4k} + 2k + 643 + 12k3¢3 — 964 + 35 ] ,

31)

2 — 1 2 2
V3(s)] = 5 [—2 (1 - 3¢0) + \/5\/—1 — 4k? + 2k + 643 + 12k23 — 944 + 35 ] .

Since we wish that for Z — co we recover the standard
behavior of the bulk, which is simply given by the first
term on the right-hand side of Eq. (17) [using Eq. (13) we
see that this yields the usual concentration wave growing
with time], V(Z, s) must decay to zero for Z — oo. Hence
we must choose only the positive solution in Eq. (27). In
addition, the negative signs in Eqgs. (29) and (30) are re-
dundant: cos(uZ) is an even function of its argument;
while the function sin(uZ) is odd, €Q(s) also changes
sign when p changes sign, and hence the minus signs
in Eqgs. (29) and (30) do not yield anything new.

A further obvious condition that we must require is
that p(s) is real-valued. From Egs. (29)-(32) we see that
the expression underneath the square root in Egs. (31)
and (32) must be non-negative, which yields

5> 80 = % [(1—363)" — 2kt + k2 (1 - 347)] . (33)

Considering wavelengths and states inside the spinodal
we have —3/2 = 1 — ki — 343 > 0. Then Eq. (33)

(32)

f

ensures that u?(s) > 0 if the + sign in this equation
is taken. The condition that v?(s) > 0, however, ex-
cludes the minus sign in Egs. (31) and (32), and hence
the solution Eq. (30), where this sign comes from, has
to be discarded altogether. In fact, even if the plus sign
in Egs. (31) and (32) is taken, the condition »2(s) > 0
yields an additional constraint on the frequency, namely,

s>sp=(1-— 3¢(2,)2 . (34)

One can show that no exponentially decaying solution
of the type of Eq. (20) exists for small s and k) = 0.
The conditions Egs. (33) and (34) have to be taken into
account when one transforms back from the frequency
domain to the time domain. Since the resulting integrals
are clumsy and not analytically soluble, we avoid this
step here altogether and rather discuss only the general
features of the Laplace transform @(Z, s) or its surface-
directed part V(Z, s) here.

Let us first ask where this function has its zeros and
its extrema: the zeros Z = Zy(s) are solutions of
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cos[ju(s) Zo(s)] + () sinfu(s) Zo(s)] = 0,

Zo(s) = —p,—(ls_) arctan[1/9(s)] .

The maxima and minima are at Z = Z,,, satisfying

(35)
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FIG. 4. Surface part V(Z,s) of the Laplace transform
4(Z, s) plotted vs the scaled distance Z for the case h; = 4,
v = 4, g = —4, amplitude uo = 0.025, ¢o = 0, and three
values of the scaled wave number ky: k = 0 (a), ky =1 (b),
and k| = v/2 (c). In each case, four values of the scaled fre-
quency s are shown, as indicated in the figure. Note that the
frequency limit sq = 1 here, while s = 1/3 (a), 1 (b), and
1/3 (c).
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[1()22(s) — v(s)] cos[u(s) Zum (s)]
= [u(s) + v(s)(s)]sin[u() Zm(s)] , (36)

or

V(z,s)

30
z
6
4 ——— §=0.15
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a
5 3
> [1 [ ES—
2t
(b)
-4 N n
0 10 20 30
z
2.0
—— §=0.35
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N
>
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FIG. 5. Surface part V(Z,s) of the Laplace transform
i(Z, s) plotted vs the scaled distance Z for the case h: = 4,
v = 4, g = —4, amplitude uo = 0.025, ¢o = 0.47, and
three values of the scaled wave number kj: kj = 0 (a),
kj = /1 — 342 (b), and kj = v/24/1 — 3¢2 (c). In each case,
four values of the scaled frequency s are shown, as indicated
in the figure.
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p(8)$2(s) — v(s)

tanlu(s) Zm(s)] = JOS TS0 -

37)
We emphasize that neither Zy(s) nor Z,,(s) depend on
the surface parameters hy, g, and 4. From Eq. (37) we
recognize that an extremum always will occur close to
the surface, Z,,,(s) = 0, if u(s),v(s) € (e —B)/2 =4(1—
kf/2—3¢3), because then in Eq. (21) the terms nonlinear
in p or v can be neglected and Q(s) ~ v(s)/u(s). From
Egs. (31) and (32) we see that for kj — 0 and s near s;
this condition is roughly obeyed if ¢¢ is small, since then
u(s) = /1 — 3¢Z, nearly independent of s, and v(s) ~ 0.
In this limit, Q(s) clearly is very small, and then the

V(zs)

30

V(z,s)

(b)

0 10 20 30

V(z;8)

20 30
z

FIG. 6. Same as Fig. 5 but for ¢ = 0.56.
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FIG. 7. Inverse frequency dependent correlation length
v(s) (a), inverse wavelength p(s) (b), scaled position of the
first zero Zo(s) (c), and the product u(s)Zo(s) (d) for ¢o = 0
plotted vs scaled frequency s for three choices of k|, as indi-
cated in the figure.



SURFACE EFFECTS ON SPINODAL DECOMPOSITION IN THE. ..

2855
2.0 r , : 2.0 , - .
T k = o 2,1/2 - = o
----- k=(1-3 —---- k=(1-309)"
sl ke 2"%(1-3¢9)" 15 |~ k=2"03)"
Z10} J
>
0.5 ]
(a)
0.0 n . .
) 5 10 15 20
s
2.0 . . . 2.0 , . .
— k=0 — k=0
_____ k=(1-3 2,172 o k=(1_3¢z)1/2
15 e k=2 2(1_34’2)1/2 . 15 - k= 2m(1_3¢2)|/2

s s

100 T r T 10 T v .
----- :f?1-3¢2)"2 ::?1-3 %)
R k ; 2‘2(1_3¢2)|/2

e~ k= 21R(1_3¢2)1/2

) =z 4
N N
(c)
A i A o A .
0.0 5.0 10.0 15.0 20.0 0 5 10 15 20
s 8
4 v v v v 4 T T v v
fffff :fow %) ,,,,,:ff,_s %)
ek - (21;1(1_:,)¢2)1/2 ek ; 21n(1q:3¢2)1/2
3! } ] 3t ]
| |
) )
N E N ]
= z
\.:/‘ =
10° 10° 10° 10° ) ’ 10° 10°
S

FIG. 8. Same as Fig. 7 but for ¢o = 0.47. FIG. 9. Same as Fig. 7 but for ¢ = 0.56.
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phase ¢(s) defined in Eq. (24) is close to zero, we have
in Eq. (20) nearly a pure cosine function, and the zeros
defined in Eq. (35) occur at

() Zo(s) = %w ,

while for large s Egs. (21), (31), and (32) imply Q(s) —» 1
and then

=0,1,... ,5s >0 (38)

2 1
,u(s)Zo(s)zg—{—(L)—?r , n=0,1,... .

: (39)

N

|

i

|
ATTT
T ]
o=® s

A(s)
S

(a)

N

©
|
I
I
AT T
wownn
o= ®a

A(s)
5

FIG. 10. Plot of the amplitude A(s) versus scaled fre-
quency s, for the case v = 4, g = —4, kj = 0, ¢o = 0 (a),
¢o = 0.47 (b), and ¢o = 0.56 (c), for a variety of choices of
the scaled surface field h, as indicated in the figure.
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As an example for the spirit of this discussion, we present
first some numerical examples for V(Z,s) in the case
hi =4,y =4, g = —4, and ¢¢ = 0, for which a numeri-
cal solution of the full nonlinear equation was presented
in Ref. [16] for several values of k| and suitable values
of s compatible with Egs. (33) and (34). One sees that
for s near s, and k) = 0 the damping of the concentra-
tion wave is rather small, one can resolve several oscilla-
tions with Z, while for large s the damping is fairly rapid
[Fig. 4(a)]. But nevertheless the wavelength describing
the oscillations of the function V' (Z, s) depends only little
on s in this range.

Figures 5 and 6 show analogous results for a case just
inside the spinodal, ¢ = 0.56 (the spinodal is given by

ATTT
n
-

o= ®a

FIG. 11. Same as Fig. 10 but for g = —8 (where one is on
the wet rather than nonwet side of the transition).
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1-3¢2 =0, ie., ¢o= V3 T 0.577) and a case which
is distinctly off critical but not yet very close to the spin-
odal, ¢g = 0.47. One can see that the characteristic
linear dimension of the surface-enriched layer strongly
increases as the spinodal is approached, while otherwise
the qualitative characteristics of the behavior are still the
same as in Fig. 4. Of course, the divergence of the critical
wavelength of the linear theory of spinodal decomposition
at the spinodal curve is a mean field artifact [24-34] and
hence we do not expect much evidence for this critical
increase of the linear dimension of the surface-enriched
layer in real systems, apart from the case of polymer
mixtures with very high molecular weight for which the
spinodal becomes a precise meaning [30,31).

After having verified that the results of our treatment
make physical sense—at least if we stay off the spinodal
curve—we discuss now the frequency dependence of the
various quantities of our treatment in more detail. Fig-
ures 7-9 show the decay constant v(s), wavelength u(s),
and the position Zp(s) of the zeros for the three cases
$o = 0, ¢po = 0.47, and ¢¢ = 0.56 studied above. Re-
member that these results are completely independent of
the boundary condition at the surface—the latter enters
only via the amplitude function A(s). Of course, in the
time domain we then have a convolution of these various
dependencies through the inverse Laplace transform.

We recognize that v(s) and u(s) are always monoton-
ically increasing functions of s. For kj = 0 and ¢o = 0
the s dependence of u(s) is rather weak, while v(s) in-
creases much more strongly. This fact is responsible for
the observation that the behavior at the smallest admis-
sible frequencies dominates the oscillations in the pro-
file. While for ¢o = 0 the dependence on k| is very
pronounced, for ¢¢ near the spinodal it is rather weak.
Note that the choices of k| correspond to the wave-
length of maximum growth and to the critical wavelength
(lc:lrl"ax =4/1—-3¢% = kﬁ/\/i) for spinodal decomposition
in the bulk.

Since the position of the first zero Zo(s)|n,=0 decreases
rather rapidly from its initial value 7 /2(s — 0) to smaller
values with increasing s, the prediction of the zeros of
d¢(Z,t) needs the inverse Laplace transform of our re-
sults and hence is a rather subtle matter. For the arrows
in Fig. 2(b) we have used Eq. (39) as a simple approxi-
mation. '

Finally, Figs. 10 and 11 study the effect of the bound-
ary condition at the surface, which enter via A(s). One
can see that A(s) decreases rapidly with increasing scaled
frequency s. Thus it is clear that the frequencies at the
lower cutoff [so or s, Egs. (33) and (34)] will dominate
in the Laplace transform. Hence the time scale for the
growth of the profile in Fig. 2(b), in the initial stages
where the linear theory is supposed to be valid, is of the
order of (sg)™! = (1 — 3¢3) L. It is also remarkable that
A(s) changes only rather little if the higher order term
in the boundary condition Eq. (15) is neglected (setting
formally ' = O there and in the following). This ob-
servation implies that there is only a small quantitative
difference between the solution of the truncated equation
[where the second term with the derivative proportional
to k' in Eq. (15) is omitted from the outset] and the full
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equation. Thus one can understand now why the treat-
ments based on the full boundary condition [13,16,17]
and the truncated one [14,15] are qualitatively very sim-
ilar.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we have presented an extension of the
linearized theory of spinodal decomposition due to Cahn
and Hilliard [20] to include the effect of free surfaces.
We assume, however, that the effect of the surface is
strictly local, disregarding possible effects due to long
range forces, and hence the surface effects come in only
through the effect of boundary conditions on the Cahn-
Hilliard differential equations. There are two such bound-
ary conditions, both of which have a clear physical inter-
pretation: Eq. (3) [or Eq. (16), respectively] says that
the concentration current across the boundary is zero;
the other one [Egs. (2) or (15), respectively] describe the
relaxation of the local order parameter at the surface, re-
sponding to the surface field and change of interactions
at the surface, etc. We have also examined the effect of
working with an approximate boundary condition rather
than the exact one, as is sometimes done [14,15], and
have found that in typical cases it makes little difference.

Our results reiterate the finding of previous numerical
work [16,17], that during the initial stages it makes little
difference whether one considers conditions of nonwet or
wet static equilibrium at the surface. The interpretation
of this finding is that the possible growth of a wetting
layer is such a slow process that it does not interfere with
the much faster growth of a surface-directed concentra-
tion wave. Typically [cf. Figs. 4(a), 5(a), and 6(a)] the
amplitude of the damped oscillatory concentration pro-
file is rather large at the surface, for the dominating fre-
quency (sg or sg, respectively), and hence an enrichment
layer at the surface forms rapidly, irrespective of the state
in the surface phase diagram (Fig. 3). The length scale
of this enrichment zone is given entirely in terms of bulk
properties, see Egs. (31) and (39); the boundary condi-
tions enter solely via the amplitude A(s), Eq. (23). Of
course, this exact factorization of boundary effects and
effects dominated by bulk properties is exactly true only
in the linearized theory and in the frequency domain; the
Laplace transform to Eq. (13) should be evaluated to
transform our results to the time domain, but since this
is no longer analytically possible this numerically cum-
bersome step has been avoided. But a comparison to the
numerical data [Fig. 2(b)] suggests that this conclusion
can at least approximately be carried over to the final
solution of the full nonlinear equation as well.

The fact that the scale of the oscillations of the con-
centration profile near the surface is basically set by the
wavelength of spinodal decomposition in the bulk is rec-
ognized when we use s = s;, for kj = 0 in Eq. (31), which
yields

12 (s0) = (1 - 343). (40)

From Egs. (7) and (8) we see that the wave num-
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ber kmax of a maximum growth in the bulk also is
given by k2, = a/2 = 1 — 3¢2 in our normalization
(kmax = 27/Apm, cf. Fig. 1). Thus, the wavelength of
maximal growth, dominating spinodal decomposition in
the bulk, appears to control also the surface behavior.
Consequently, approaching the spinodal one can see a di-
vergence of this length, which is quite obvious from the
profiles [Figs. 4(a), 5(a), and 6(a)]. It is quite clear that
this singular behavior at the spinodal {¢, = 1/v/3, both
u?(sh) and k2, vanish when ¢9 — ¢35} will be wiped
out due to the combined effect of nonlinearities and sta-
tistical fluctuations [28-34]. Numerical studies checking
this behavior near the spinodal would be very desirable,
as well as experiments on polymer mixtures with high
molecular weight, where some remnants of this singular
behavior might be detectable due to the mean field char-
acter of these systems [30,31].

We also emphasize that the decay constant v(s) for s
near s, always is of the same order as u(sp), since Eq.
(32) implies for kj = 0 and s = s; that v%(sp) = 0, i.e.,
exactly at this boundary the wave would be undamped,
but it is clear from Eq. (32)—and also evident from
Figs. 6-8—that v(s) increases rapidly to similar values
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as u(s).

In conclusion, we have demonstrated here that the in-
vestigation of surface effects on spinodal decomposition
would provide another means of testing the linearized
theory of spinodal decomposition in the bulk, if the sur-
face can actually be characterized by a short range per-
turbation as assumed here. We hope that our study will
stimulate corresponding experiments to test these pre-
dictions. :
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